Audiology
Patrick F.Chinnery, MBBS(Hons), PhD, FRCPath, FRCP, FMedSci

Consultant Neurologist, Regional Neuroscience Centre, Newcastle upon Tyne Foundation Hospitals NHS Trust, Newcastle upon Tyne, UK,
Wellcome Trust Senior Fellow in Clinical Science,
Professor of Neurogenetics, Newcastle University, Newcastle upon Tyne, UK.

© 2010
Key points

• Impaired hearing is a common feature of mitochondrial disease1, 2, but not all patients with mitochondrial disease develop deafness.
• The hearing impairment often remains undetected for many years and can be overshadowed by more acute or physically disabling aspects of a multi-system mitochondrial disorder3.
• Hearing impairment in mitochondrial disease often responds well to treatment4. Physicians should therefore keep the auditory system well in mind both for new patient consultations and when they review patients with an established diagnosis.
• Clinical audiometry should be used to detect sub-clinical hearing loss.
• Management includes digital amplification with hearing aids and cochlear implantation.
• The detection of aminoglycoside-induced hearing loss should prompt investigations for the m.1555A>G mutation. If positive, maternal relatives should be advised to avoid aminoglycoside drug exposure.

Clinical investigation of the auditory system

• Mitochondrial disorders are often characterized by cochlear deafness, which can be evaluated using the pure tone audiogram as a standard clinical tool (Figure). This can be used to diagnose the deafness, and evaluate its pattern and severity.
• The assessment of otoacoustic emissions (OAE)5 is also helpful. OAEs are sounds produced by an active cochlear mechanism. If absent, this indicates a cochlear component.
• The function of the auditory nerve and ascending pathway can be assessed using brainstem evoked electroencephalogram (EEG) potentials measured in response to sound clicks. This is also called the brainstem evoked potential audiometry (BEA). Waves I and II of the brainstem potential arise from the auditory nerve whilst waves III to V arise from central brainstem structures below the inferior colliculus in the tectum.
• Structural magnetic resonance imaging (MRI) allows the identification of lesions within the ascending auditory pathway6.
• Functional magnetic resonance imaging and magnetoencephalography may develop into clinical tools for the assessment of central auditory processing7, but these are currently only used in research.

Clinical features of mitochondrial deafness

• Hearing loss in mitochondrial disease can be isolated (non-syndromic) or part of a complex multisystem disorder (syndromic deafness). The major clinical syndromes are summarized in Table 1.
• The hearing loss is usually peripheral - due to cochlear or auditory nerve dysfunction.
• In patients with a multi-system mitochondrial disorder, the auditory system may also be affected at the brain stem, midbrain or at a higher level in the auditory cortex – but this is often overshadowed by the peripheral lesion.
• The peripheral hearing loss typically affects high frequencies first, followed by intermediate frequencies, and finally involving low frequencies, causing the typical “flat” audiogram seen in a severely deaf individual3, 8, 9 (Figure).
• OAE are absent in most patients with mitochondrial deafness due to cochlear involvement 3, 9-11.
• The severe peripheral component usually prevents physiological stimuli from reaching the brainstem pathways, making it difficult to assess a central component of the deafness. Structural MRI can be used to demonstrate abnormalities within the brainstem and involving the central auditory pathways and the auditory cortex. Evidence of severe central neurological disease will limit the improvement following cochlear implantation.
• Severe deterioration can occur acutely, particularly in patients with the m.3243A>G mutation 3, 9 and patients with the m.1555A>G mutation where it may be related to aminoglycoside exposure 12.

Management of mitochondrial deafness
• In most patients, the primary deficit is cochlear and responds well to single or binaural amplification
• A poor response to amplification could be due to additional central auditory involvement (such as the brainstem and connections) or co-incidental middle-ear disease.
• Always ask about tinnitus, because tinnitus masking may improve auditory function.
• Patients with a severe binaural defect that does not respond well to amplification should be considered for cochlear implantation. This has been successful in many patients with isolated and syndromic deafness due to mitochondrial disease 9, 13-18, with approximately ~2/3 able to converse on the telephone following the surgery 18
• Although complications are rare, the cochlear implantation should only be undertaken with caution. Close involvement of a mitochondrial physician is essential to identify systemic features of mitochondrial disease before, during and after surgery which could compromise the outcome.
• Cognitive impairment, hidden by severe deafness, may limit the auditory rehabilitation after successful surgery. It may not be prudent to invest in a cochlear implant in a patient with a very poor prognosis from the outset.
• Patients and maternal relatives found to harbor the m.1555A>G mutation should avoid exposure to aminoglycoside antibiotics.

Acknowledgements
The author is a Wellcome Trust Senior Fellow in Clinical Science who also receives research funding support from the United Mitochondrial Diseases Foundation. This chapter was adapted from Mitochondrial Otology 21.
Figure

Pure tone audiograms showing: (A) severe hearing loss across all frequencies in a 44 year old male harboring the mtDNA 3243A>G tRNA Leu\(^{(\text{UUR})}\) mutation; and (B) high-frequency hearing loss in a 56 year old male with Kearns Sayre syndrome due to a single 4.7Kb deletion of mtDNA. Open circles = air conduction, open triangles = bone conduction. dB = decibel hearing loss, ISO = international standards organization. Reproduced with permission from *Oxford University Press*, Brain 2000;123:82-92.
References

Table 1. Hearing impairment in mitochondrial disease – genotype and phenotype.

<table>
<thead>
<tr>
<th>Category</th>
<th>Syndrome</th>
<th>Principal associated features</th>
<th>Molecular defect</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndromic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-systemic</td>
<td>KSS</td>
<td>PEO, ptosis, ataxia, pigmentary retinopathy, heart block.</td>
<td>mtDNA deletion</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>CPEO</td>
<td>+/- proximal limb weakness</td>
<td>mtDNA deletion or point mutation.</td>
<td>S or M</td>
</tr>
<tr>
<td></td>
<td>MELAS</td>
<td>Seizures, encephalopathy, stroke-like episodes, diabetes mellitus, cardiomyopathy</td>
<td>mtDNA 3243A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Leigh syndrome</td>
<td>Relapsing encephalopathy, ataxia, cardiomyopathy, hepatic failure</td>
<td>Nuclear or mtDNA</td>
<td>M or AR</td>
</tr>
<tr>
<td></td>
<td>Encephalomyopathy</td>
<td>Myopathy, diabetes, encephalopathy, ataxia</td>
<td>mtDNA 14709T>C</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>OPA1+</td>
<td>Visual failure, neuropathy, ataxia and ophthalmoplegia</td>
<td>OPA1</td>
<td>AD</td>
</tr>
<tr>
<td>Oligosyndromic</td>
<td>MIDD</td>
<td>Diabetes mellitus</td>
<td>mtDNA 3243A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>MIDD</td>
<td>Diabetes mellitus</td>
<td>mtDNA 8296A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>MDD</td>
<td>Dystonia, cortical blindness, paranoid delusions.</td>
<td>TimM8A</td>
<td>XLR</td>
</tr>
<tr>
<td></td>
<td>MMA</td>
<td>Leigh-like encephalopathy, dystonia</td>
<td>SUCLA2</td>
<td>AR</td>
</tr>
<tr>
<td>Non-syndromic</td>
<td>Aminoglycoside-induced</td>
<td>D</td>
<td>mtDNA 1555A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Non-aminoglycoside-induced</td>
<td>D</td>
<td>mtDNA 1555A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>mtDNA 3243A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>mtDNA 7445A>G</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>mtDNA 7472insC</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>mtDNA 7511T>C</td>
<td>M</td>
</tr>
</tbody>
</table>

AD = autosomal dominant, AR = autosomal recessive, CPEO = chronic progressive external ophthalmoplegia, D = isolated (non-syndromic) deafness, KSS = Kearns Sayre syndrome, MELAS = mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, MIDD = maternally inherited diabetes and deafness, MMA = methylmalonic aciduria, M = maternal inheritance, OA = optic atrophy, S = sporadic, XLR = X-linked recessive